

MetaBAT: An Efficient Tool for Accurately Reconstructing Single Genomes from Complex Microbial Communities

Don Kang

Metagenomics at Gene or Pathway Levels

20,000 New Cellulase Genes

Expression of Methanogenesis **Pathways**

4/8/15 Hess et al, 2011, Shi et al, 2014 2

But, Genomes would be Better!

- Able to get a full picture of metabolic capacity of an individual member of the community
- Study genome dynamics of individual members
 - Genome-wide sweep, gene gain/loss analysis
- Understanding inter-species interaction

How can we construct single genomes from metagenomic data?

Genome Reconstruction from Metagenomic Data

Genome Reconstruction from Metagenomic Data

Existing Binning Methods

- Reference Based Binning
 - Phylogeny based
- De novo Binning
 - Sequence composition
 - Abundance
 - Both

- Inaccurate for complex metagenomes
- Manual
- Not scalable for many samples

Co-Abundance (coverage covariance) Binning

Abundance (Coverage) Binning

Ideally, contigs from the same genome should have the same coverage.

But, single abundance cannot differentiate multiple genomes of similar abundance?

Co-abundance Binning

Multiple samples (libraries) help to differentiate the similar abundance in single sample (library).

Design Goals for Binning Software

Automated Unsupervised Co-abundance Binning

- Integration of <u>tetranucleotide frequency (TNF)</u> and (or) <u>abundance (ABD)</u> as features
- Handling of multiple ABDs from samples

Highly Efficient

- A couple of hours to bin millions of contigs having thousands of samples
- Runnable in a single node (<20G memory)

Reproducible and Reliable

- Robust to noise in contigs or samples
- Designed to have <u>high specificity than sensitivity</u>

Flexible

- Handle any number of samples
- Adjustable parameter setting to change sensitivity and specificity

Simple

Easy to run and fully automated

Run MetaBAT!

runMetaBat.sh assembly.fasta *.bam

Benchmarks of Automated Metagenome Binners With A Medium Sized Data Set

- > 5 binning methods
- 264 human gut metagenomic samples (ERP000108)
 - Assembled into 200K contigs
 - Used a method (CheckM) to estimate completeness and precision based on single copy genes

The Contestants

MetaBAT

Sequence composition (TNF) + Co-abundance

CONCOCT

Sequence composition + Co-abundance

GroopM

- Sequence composition + Co-abundance
- Optional manual steps

MaxBin

Sequence composition + Abundance

Canopy

- General purpose clustering algorithm
- Co-abundance only

MetaBAT found the most genomes

MetaBAT runs very efficiently

	MetaBAT	Canopy	CONCOCT	MaxBin	GroopM**
Number of Bins Identified (>200kb)	234	223	260	168	335
Number of Genomes Detected (Precision > .9 & Recall > .3)	130	96	64	39	28
Wall Time (16 cores; 32 hyper-threads)	00:03:36	00:02:31*	82:19:53	06:49:39	12:19:12
Peak Memory Usage (for binning step)	3.0G	1.6G*	7G	5.8G	6.3G

^{*}Canopy only use abundance table as input, so it should have taken more time and memory to read and write sequence data like the others

^{**}Manual steps were not used

Binners complement each other

Can MetaBAT Scale to Huge Data Set?

- > 1704 human gut metagenomic samples (ERP002061)
- >1M contigs over 1kb
- Only MetaBAT and Canopy was able to handle the amount of data
- 3 hours in a single node (with 32 threads using 17G memory)
- MetaBAT produced 790 (out of 1634) genome bins with >30% completeness and <5% contamination</p>
- Using genome bins as seeds, we recruited & reassembled reads to improve the quality of bins.

The Quality of Genome Bins Approximates High Quality Draft Genomes

MetaBAT MGS+ Reassembly Draft Genomes

Acknowledgement

Rob Egan

Jeff Froula

