

DNA synthesis Pipeline and applications

Sam Deutsch
DNA Synthesis Science

Why Synthesis?

FUNCTIONS

10-year Vision for Evolving Capabilities

10 year vision for DNA Synthesis at the DOE JGI.

JGI 'Build' Pipeline

Design

Goal: To enable scalable pathway refactoring from coding sequence information (DBs) to order sheets and protocols

Multiple tools:

- GeneDesign/DNAssembler (Codon optimization, partition)
- DIVA/J5 (Combinatorial library design)
- ICE (Parts repository)
- SPL (sequence polishing library... New)
- IMG2DE (from databases to Synbio design... New)

SeqScreen (Biosecurity screening tool.. not really design)

Interact with other external synbio tools: RBScalculator, Pigeon

Automatically Design 1000s of pathways

Industry relevant GH1s

Mine Databases

Phylogenomic selection

JGI-JBEI collaboration

- Interested in GH1 enzymes for biomass deconstruction
- Looking for enzymes that can operate under industrial conditions (70 °C, 20% ILs)

ACJ75238 ACZ42845 ABS61401 ACM22958 ACW01253 CAA91220 AALB1332 AAA72843 AACJ76349 AAQ00997 CAA56282 No GH1 ON [C_mini][Okd] 70 C 24 hrs

Specific activity (U/mg)

Annotated tree

HTP characterization

ACS Chem Biol,2014

Characterize transcription factors in model plants

Synthesis of about 600 TFs governing cell wall metabolism (Y1H, overexpression, KOs).

Round 1= 300 TFs: Success rate: 55%, Cycle time ~ 1 Year

CSP: Sam Hazen (UM Amherst)

Other significant features:

- Direct repeats
- Homopolymers
- Hairpins
- Composition of sequence ends

Implement rules during design stage Higher success rate ??

Round 2= 300 TFs: Success rate: 95%, Cycle time: 60 days

Apply learning strategy to all Synbio steps: Synthesis, Assembly, Expression, Phenotype (improve Design)

Characterize Orphan Fungal PKS Clusters

Mine JGI Databases

JGI: RNA seg Manual curation

CSP: Istvan Molnar (Arizona State)

- Looking for Biosynthetic clusters encoding Reduced PKS
- Biofuel replacement molecules
- Monomers for new materials
- Molecules mediate ecological interactions

8/10 strains generate novel compounds

JGI:

Synthesis & Assembly QC

37/40 delivered to user in ~100 days

Curated Biosynthesis clusters

JGI:

Construct Design

Expression: Promoters/Terminators, Topology Optimization + Assembly strategy

Focus Area: Secondary Metabolism

Characterize the role of secondary metabolites in mediating microbe-microbe and plant-microbe interactions and their effect on biological systems

Why study secondary metabolites?

- Constitute 15-20 % of gene content in certain environments. Poorly characterized, and ecological role is largely unknown
- Thought to be important for signaling (e.g., Quorum sensing, Flavonoids-RNB) and impact physiology (competence)
- Thought to be key determinants of community composition, and thus has large impact on biogeochemstry.

Actinorhodin

Actinorhodin: polyketide antibiotic produced by *Streptomyces coelicolor*, requiring 22 genes for biosynthesis. Cluster ~ 25 kb, %GC >70

Why Actinorhodin?

- Representative of many biosynthetic clusters (size, complexity, GC content)
- Pathway is well characterized (but never before refactored)
- Actinorhodin is readily detectable (blue/red pigment depending on pH)

Actinorhodin pathway refactoring

<u>"Refactoring"</u>: Redesigning a complex set of operons that are highly regulated under native conditions to predictably achieve a phenotypic outcome under laboratory conditions

Native pathway:

Highly regulated expression; unknown control system

Refactored Design:

Goal: predictable expression

Actinorhodin pathway construction

- Pathway contains 22 genes for a total of 25 kb
- Synthesized as randomly partitioned 1 kb blocks
- Pre-assembled into cloned and sequenced 5 kb blocks via Gibson assembly
- Final assembly of 5 kb blocks via yeast TAR cloning into Streptomyces integration vector

High efficiency yeast TAR cloning

Screened clones via PCR walking; Sequenced 8 positive clones using PacBio

Two preps used for Streptomyces coelicolor strain generation

Actinorhodin strain characterization

S. coelicolor \(\Delta act strain \) (control)

Refactored actinorhodin strains

Extracts for LC-MS analysis

JGI Synthesis Science: Not Just Synthesis!

Summary

- Described rationale for DNA synthesis Science at JGI
- Described pipeline
- Emphasis on integrated approach, where synthesis is only a component of the program. Capability suite includes data mining, design, construction and characterization
- Examples of science applications and focus area