

Sequencing Technologies: Overview & Capabilities

Chris Daum Genomic Technologies Workshop March 22, 2016 cgdaum@LBL.gov

Sequencing Technologies Group

Area Leads (3); Resource & NTI manager (1); R&D Project manager (1)

- Streamlined Process from Sample In to Sequence Data Out
- Perform Process Optimization & Development:
 - New Preps, Applications, Sequencing Technologies
 - Continuous Improvement & Lean Manufacturing Six-Sigma

Supported by ITS-GLS LIMS system

Staying State of the Art

07/2005 01/2007 04/2007 10/2007 07/2008 05/2009 12/2009 7/2010 11/2010 3/2011 12/2011 04/2013 06/2014

JGI Yearly Sequence Output

44,000 human genome equivalents!

JGI Sequencing Platforms Portfolio

	lllumina HiSeq 1T	lllumina HiSeq 2500	Illumina HiSeq 2000	Illumina NextSeq 500	Illumina MiSeq	PacBio RSII	PacBio Sequel
Units	3	3	2	1	5	3	2
Reads (Single-Read	>1,500 Million per Flowcell	200 Million per Flowcell	>1,000 Million per Flowcell	400 Million per Flowcell	>10 Million per Flowcell	0.06 Million per SMRT Cell	0.4 Million per SMRT Cell
Readlength	2 X 150bp Max*	2 X 250bp Max	2 X 150bp Max*	2 X 150 Max	2 X 300bp Max	>12,500bp Avg; >40,000bp Max	12,000bp Avg; >40,000bp Max
Total Bases	500 Gb per Flowcell	130 Gb per Flowcell	350 Gb per Flowcell	>100 Gb per Flowcell	5-20 Gb per Flowcell	>0.4 Gb per SMRT Cell for 2hr runs; >0.8Gb for 4hr runs	>2.7 Gb per SMRT Cell for 2hr runs; >5.0 Gb for 4hr runs
Run Time	7 Days for 2 X 150	4.5 Days for 2 X 250	16 Days for 2 X 150	1 Days for 2 X 150	2 Days for 2 X 300	0.08-0.12 Days (2-4 hours)	0.08-0.12 Days (2-4 hours)
Applications	Primary Sequence Generator at JGI	Rapid output HiSeq	Supplement / Backup Platform	Rapid mid- range output; Single Cell	16S/18S iTags, Library QC, R&D	Assembly improvement, de novo, SynBio validation, methylation/ epigenetics	Early Access Testing

Major Investment in Automation: Process

Maximize Consistency, Throughput and Reliability

Automated Library Creation

- Plate based Automated library preps:
 - Implemented into Production in late 2011
 - 3 PerkinElmer Sciclone NGS robots
 - 12 production sample prep methods are supported
 - >24,000 sample sequencing libraries prepared in last year
- Supporting Equipment:

Sciclone Automated Preps

• Illumina gDNA PCR-free WGS Fragment Library prep

- Illumina TruSeq RNA-seq stranded library preps:
 - PolyA selection of mRNA for eukaryotes
 - rRNA depletion for microbes & metatranscriptomes
- Illumina small RNA & miRNA for eukaryotes
 - Illumina iTags (16S proks; 18S euks; Fungal ITS)
 - Illumina Exome Capture (NimbleGen SeqCap) prep for targeted resequencing
 - Illumina NexteraXT prep
 - PacBio DNA 2kb libs, and >10kb libs with enzymatic shearing

Preps in Development

Supported <u>Pr</u>eps

- Illumina Methyl-Seq (bisulfite conversion) prep
- Illumina 3' RNAseq prep

Continued Growth in Number of Samples Handled

A Growing Portfolio of Library Capabilities

Chew Yee Ngan

A Growing Portfolio of Library Capabilities

Example: DNA Products

 270bp 500bp Low input- Nextera	Genome Fragments
Tight insert 400bpTight insert 800bp	Genome Fragments
 Pacbio 2kb Pacbio 3kb Pacbio >10kb Low input 10kb Pacbio 20kb Oxford Nanopore 	Long Reads
 2.5kb 4kb 8kb 	Long Mate Pairs ¹²

RNA Sample Prep: Gene expression

Small RNA-seq

Prokaryotes: 50-150bp

Epigenomic: DNA modifications

5 Methyl C Bisulfite sequencing

Methyl A Pacbio sequencing

Unmodified DNA template

Stephen Mondo's Presentation ¹⁴

Epigenomic: Chromatin structure

Regulatory elements/ open chromatin: FAIRE-seq

Histone modifications Protein binding sites ChIP-seq

New Technologies

- Gene expression study
- Reduced sequencing cost

- ATAC-seq (Assay of Transposase Accessible Chromatin)
 - Identification of genome wide regulatory elements

- Reduced sample requirement
- Organism dependent – requires customization

Major User Request: Decrease Sample Amount Requirements

The need for cheaper nano-scale sample prep

Input; cost

Fluidigm C1[™]

Illumina Neoprep

X÷

Throughput; consistency

Microfluidic platform

2014-2016 ETOP Blainey Lab MIT _B

Emerging Technologies Opportunity Program

Closed Commercial Microfluidic Platforms

Oil-Oil Interface

Carrier Oil Oil-Aqueo

Emerging Sequencing Technologies

• Oxford Nanopore Technology – find out more from Juna Lee next!

