Metagenomics introduction

Adam R. Rivers Metagenome Program Lead DOE Joint Genome Institute February 4, 2016

Objectives

- Understand the main methods used in metagenomics
- Understand the main analysis techniques for each data type
- Understand the questions that metagenomics answers

Metagenomics defined

Core methods

Related methods

- Amplicon sequencing
 - Phylogenetic markers
 - Functional genes
- Metagenomes
- Metatranscriptomes

- Exo-proteomics
- Exo-metabolomics
- Single cell genomics
- Stable isotope probing

Metagenomics history

JOURNAL OF BACTERIOLOGY, July 1991, p. 4371-4378 0021-9193/91/144371-08\$02.00/0 Copyright © 1991, American Society for Microbiology Vol. 173, No. 14

Analysis of a Marine Picoplankton Community by 16S rRNA Gene Cloning and Sequencing

THOMAS M. SCHMIDT,[†] EDWARD F. DELONG,[‡] AND NORMAN R. PACE*

Department of Biology and Institute for Molecular and Cellular Biology, Indiana University, Bloomington, Indiana 47405

Main methods: 1. Amplicon sequencing

Main methods: 2. Metagenomes

• A Metagenome is a collection of sequences from DNA in an environmental sample containing a mixture of organisms.

Taxonomic questions

"Who lives here?"

Functional questions

"What do they do?"

Organismal questions

"What of the genomes of the organisms in my community look like?" Ecological and biogeochemical questions

Metagenome analysis

The first wave 2007-2013

- Read based bulk taxonomy
- Read based bulk functional annotation
- Fragment recruitment mapping to references

The second wave 2010-2014

- Assembly of metagenomes
- Mapping back to assembly
- Functions within taxonomy

The third wave 2013-now

- Assembly and binning of genomes from metagenomes
- Metabolic potential within genomes
- Syntrophy
- Biogeochemical modeling

Metagenome example

Metagenome demonstration

Data preprocessing cleaning

adaptor		adaptor
	sample sequence	

- \cdots Insert size (270 for 2x150)
- Data file is in FASTQ

@MISEQ08:359:00000000-ALD3J:1:1101:8993:3210 1:N:0:CGCTCATGGCTCTG GTCCTATTTTGGCCACCGGAAAATGTTCGGGATTTTTCGGTTTTGTACCGGGAAGGTTCTAGAAGGTTCCGAAGT ?AAAAFFFF3FDFGCFCEE0AEFDAB3F0AE0AFDDFG//A/EF0BB2F//E??A?1BGHGH2BGCGHHGEFGE? @MISEQ08:359:00000000-ALD3J:1:1101:8993:3210 2:N:0:CGCTCATGGCTCTG GGAGAGAATCCAGCAGCACCAACGGCGTGGTGGTGGAAGCAGCGGGGATCTCGGCAGGTCTTCGCCCAGCTTCGCC 1>>11>>11DFF1BCA111ABAEEECEE///BE//BB0/B00AEEEEFE12FE>/EG0@BBFGEG/E>AG#####

- The purpose of data cleaning
 - Remove sequencing adaptors
 - Remove contaminant reads

Metagenome demonstration

- Run once to remove primers
- bin/bbduk.sh in=data/ ref= data/ out=results/
- Run again to remove contaminants
- bin/bbduk.sh in=data/ ref= data/ out=results/
- Merge data together
- bin/bbmege.sh in=data/ out=results/mereged outu= results/unmerged
- Run a metagenome assembler and evaluate

Main methods: 3 Metatranscriptomes

Metatranscriptomes identify the actively transcribing community at a timescale of minutes to hours.

Typical metatranscriptome analysis

RNA sequencing

Assembly

Annotation of genes

Mapping reads to assemblies

Quantification

Differential expression

GATTAATA AATATTCATA CATATTCTA

Sampl	Le	A	В	С
Gene	1	3	5	12
Gene	2	6	7	15
Gene	3	5	8	23

Illumina 2x150

IMG

BBMap

IMG

DESeq2, EdgeR, BaySeq

Thanks