

## Metabolomic Technologies at JGI

JGI User Meeting Trent Northen

### Motivation: Microbial metabolism is central to global carbon cycling

3/23/16





Motivation: Bioenergy and Bioproducts



# Motivation: understanding the diverse activities of microbial secondary metabolites













https://www.mpg.de/6656708/odour-activation-geosmin-fly

# Need for rapid sequence-to-function technologies to complement sequencing



### **Overview of metabolomics**





### Metabolomics provides a functional complement genomics



Mass spectrometry based metabolomics provides a direct functional readout that can be linked to gene function



Vision: JGI effectively integrates metabolomics with sequencing/ synthesis providing users new biological insights





### **Experienced JGI Metabolomics Team**





**Trent Northen** 

Interest: metabolomics for microbial functional genomics and microbial community metabolism.

- PhD w/10 years metabolomics.
- Deeply connected to BER science missions through 8yrs involvement in BER science programs.
- TRNorthen@lbl.gov



Leslie Silva Interest: microbial metabolomics

- PhD w/ 3 years metabolomics
- Key developer of JGI workflows.
- LPSilva@lbl.gov



Katherine Louie

Interest: microbial metabolomics

- PhD w/ 4 years of diverse metabolomics experimentation.
- Key developer of JGI workflows.
- KBLouie@lbl.gov



Ben Bowen Research focus: metabolomics informatics

- PhD ~10 years mass spectrometry informatics
- BPBowen@lbl.gov

## Initial products: analysis of primary and secondary metabolites from media and cells





### Initials metabolomics products

JGI VICE AND A STATUTE

- Exometabolomic analysis of polar metabolites:
  - Improve gene annotations
  - Examine nutrient exchange and resource competition
  - Provide critical insights into microbial foodwebs and carbon cycling ultimately to predict carbon cycling to metagenomic data
- Secondary metabolite analysis
  - Improve gene and pathway annotations
  - Improve our understanding of microbial communication
    - Plants
    - Microbes





# Early Success Stories—Sequencing + secondary metabolite analysis

- Integrated metabolomics with transcriptomic analysis and mutagenesis to determine that psr1 is a key regulator of lipid metabolism in *Chlamydomonas* reinhardtii (Yee et al, Nature Plant, 2015)
- Integrated metabolomics with sequencing to verify accuracy of PacBio quantification of adenine methylation (Yee et al, in review)
- Integrated metabolomics with DNA synthesis to optimize secondary metabolite (violacein) production (Sam Deutsch - JGI, Nathan Hillson -JBEI)
- Integrated metabolomics with DNA synthesis to support refactoring actinorhodin biosynthetic pathway (Sam Deutsch)











#### Example: Metabolomics + DNA Synthesis Refactoring Actinorhodin pathway (21 genes)

Internal LBNL PI By Nathan Hillson, Col's: Sam Deutch, Jeff Kim, Paramvir Dehal and Trent Northen

### Challenge: Achieve predictable expression of a pathway by refactoring

- Representative of many biosynthetic clusters (size, complexity, GC content)
- Pathway well characterized (but never before refactored)

Native pathway – complex set of operons highly regulated under native conditions



Refactoring



Actinorhodin





Sam Deutsch

Nathan Hillson (JBEI)





potential

# Pathway output is 100% of Wildtype; different timecourse





#### Actinorhodin production

# Accumulation of intermediates gives insight into pathway dynamics





Metabolomics Bioinformatics to explore the biochemical space: MIDAS

Ben Bowen

and Pactolus, chemical networks for integration with IMG

- Linking genomics with metabolomics
  Compare and query in silice spectra with metabolomics
  - Compare and query in silico spectra with measured and theoretical spectra to algorithmically determine chemical identities.



### Consider including metabolomics as part of new CSPs





 Metabolomics should be in all cases tightly linked with sequencing and/or DNA synthesis

- Typical metabolomics experiments are around 50-200 samples for polar metabolite analysis and 50-500 samples for secondary metabolite analysis.
- Larger requests will be considered on a case by case basis.
  For questions about the appropriateness of projects, program specifics or application process, please contact
  Susannah Tringe: <u>SGTringe@lbl.gov</u> <u>http://bit.ly/CSP-2017</u>

For questions about metabolomics please contact Trent Northen: TRNorthen@lbl.gov